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The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest
stages of development. Our understanding of ECM composition, structure and function has grown
considerably in the last several decades and this knowledge has revealed that the extracellular
microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM
and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the
bidirectional flow of information between the extracellular and intracellular compartments. This review
considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings
specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors
is highlighted along with more recent studies implicating the 3-dimensional organization and physical
properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors.
Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent

emerging areas of interest in this field.

© 2009 Elsevier Inc. All rights reserved.

Introduction

In 1981, as a student in the venerable “Physiology Course” at the
Marine Biological Laboratory in Woods Hole, one of us (DWD) publicly
admitted to a burgeoning interest in the extracellular matrix (ECM) and
was challenged by a prominent cell biologist to justify why anyone
would want to work on “that stuff”. At the time, many had come to view
the ECM and the connective tissues in which it is found in abundance, as
having a necessary but largely passive structural role—or as the
aforementioned cell biologist so colorfully offered, “the styrofoam
packing material” of cells and tissues. A lot has changed since 1981 let
alone 1959 when the first issue of DB graced our libraries' shelves. And
while the ECM is still acknowledged to perform its pedestrian but
necessary function as a scaffold that “fills the spaces” between cells and
tissues, we have also come to appreciate its widespread functional
importance and dynamic roles in diverse cellular processes.

Several key observations culminating in the discovery of the integrins
(and other ECM receptors) in the mid 1980s, altered forever our view of
the ECM and its involvement in normal physiology and homeostasis,
disease progression and development (Dzamba et al,, 2001). Integrins
were a key piece of a puzzle that led ultimately, to a rich mechanistic
understanding of the physical linkages between intracellular and
extracellular compartments that serve to mediate adhesion, resist
mechanical stress, and facilitate the bidirectional flow of cell signals.

A successful systematic overview of the ECM and its importance in
developmental processes is a daunting if not presumptuous task so we
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have chosen instead to focus on a relatively few select examples
across multiple systems that best serve to illustrate key concepts and
mechanisms. However, Table 1 is provided to summarize ECM loss-of-
function phenotypes from multiple systems, with citations to the
original sources of information. This review is organized according to
general functional processes critical for developmental events (Fig. 1)
instead of by ECM molecule, developmental stage or by organism. Our
goal was to stress concepts related to ECM functions in development
and to offer speculative insights related to areas of current or
emerging interest.

We begin with a brief primer on ECM molecules many of which
will be discussed throughout this review. It is important to consider
that the extracellular compartment contains a variety of ECM
components, the composition and organization of which changes
throughout development beginning with fertilization. For example,
some oocytes and eggs are invested with extensive ECM of maternal
origin (e.g., zona pellucida in mammals, jelly coats of amphibians and
sea urchins) and at fertilization additional matrix is secreted and
assembled as a consequence of the cortical reaction. Whether of
maternal or later zygotic origin, ECMs are modified and remodeled
throughout development. These dynamic rearrangements and com-
positional differences are critical to understanding ECM functions at
key points in development.

A primer on ECM molecules
ECM is composed of several distinct families of molecules with

disparate evolutionary origins. These include glycosaminoglycans
and proteoglycans, collagens and non-collagenous glycoproteins.
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Table 1
ECM loss-of-function phenotypes.
ECM Isoform/component  Loss-of-function phenotypes Citations
Fibronectin Embryonic lethal (~E10.5). Cardia bifida, defects in mesoderm specification, axis elongation, MGeorge et al., 1993,
neural tube morphogenesis, myocardial precursor migration and yolk sac vasculature MGeorges-Labouesse et al., 1996,
*Davidson et al., 2006,
9Trinh and Stainier, 2004,
eLinask and Lash, 1988a,
®Linask and Lash, 1988b
Laminin al Embryonic lethal (E6.5). Extraembryonic tissue developmental defects, epiblast polarization MAlpy et al., 2005,
defects, compromised parietal and visceral endoderm differentiation, induction of apoptosis, ™Miner et al., 2004,
axis elongation and eye defects MSchéele et al., 2005,
dzinkevich et al., 2006
a2 Post-natal death (5 weeks). Muscular dystrophy ™Guo et al., 2003,
MMiyagoe et al., 1997,
9Hall et al., 2007
a3 Post-natal death (3 days). Severe skin blistering MRyan et al., 1999
ad Viable (small increase in deaths after birth). Defects in synaptic specialization, haemorrhages, MPatton et al., 2001,
cardiovascular defects. ™Thyboll et al., 2002,
dKnall et al., 2007
a5 Embryonic lethal (before E17). Exencephaly, syndactyly, extraembryonic tissue ™Miner et al., 1998,
disorganization, and fin formation defects dWebb et al., 2007
p1 Embryonic lethal (E5.5). Defects in extraembryonic tissue development, gastrulation, ™Miner et al., 2004,
implantation, notochord differentiation and eye formation. dparsons et al., 2002,
dGross et al., 2005
(2 Post-natal death (15-30 days). Growth arrest, neuromuscular junction and renal defects ™Noakes et al., 19953,
™Noakes et al., 1995b
p3 Death just after birth. Severe skin blistering MKuster et al., 1997
v1 Embryonic lethal. Notochord differentiation and eye defects MSmyth et al., 1999,
dparsons et al., 2002,
94Gross et al., 2005
Y2 Post-natal death (5 days). Severe skin blistering MMeng et al., 2003
Collagen Coll Embryonic lethal (E12-14). Aortic rupture and severe tissue integrity defects ™MLiu et al., 1995,
MLohler et al., 1984,
MSchnieke et al., 1983
Colll Death at birth. Cartilage formation defects MLj et al., 1995a,
MAsz6di et al., 2001
Collll Post-natal death (2 days). Growth retardation, reduced life-span, skin blistering, blood MLiu et al., 1997
vessel rupture
CollV Embryonic lethal (E10.5-11.5). Defects in basement membrane integrity and Reichert's MPgschl et al., 2004,
membrane integrity, growth retardation (col4al/o2) MCosgrove et al., 1996,
Renal failure (col4a3/04/as5) ™Miner and Sanes, 1996,
MRheault et al., 2004
ColV Embryonic lethal (E10). Collagen fibril assembly defects, compromised skin and connective M™Wenstrup et al., 2004,
tissue integrity MAndrikopoulos et al., 1995
ColVI Viable. Joint degeneration, musculoskeletal abnormalities, lower body weight, decreased MAlexopoulos et al., 2009
bone density
ColVII Post-natal death (2 weeks). Cutaneous blistering. MHeinonen et al., 1999
ColVIII Viable. Notochord and eye defects MHopfer et al., 2005,
dGansner and Gitlin, 2008
ColIX Viable. Noninflammatory degenerative joint disease, cartilage maintenance defects, abnormal MAszédi et al., 2001,
fin vascular plexus development. MFdssler et al., 1994,
9Huang et al., 2009
ColX Viable. Defects in growth plate development, trabecular morphology, bone architecture and MKwan et al., 1997,
craniofacial skeleton. MChung et al., 1997
ColXI Death at birth. Compromised chondrocyte differentiation, severe cartilage defects in limbs, MSeegmiller et al., 1971,
ribs, mandible and trachea. ™Li et al,, 1995b
ColXII Viable. Periodontal ligament and skin matrix architecture abnormalities (not null) MReichenberger et al., 2000
ColXIV Viable. Defects in fiber and fibril assembly in tendons MAnsorge et al., 2009
ColXV Viable. Mild muscular and cardiovascular defects, compromised notochord and somite MEKkIund et al., 2001,
differentiation. dpagnon-Minot et al., 2008
ColXVII Post-natal death (2 weeks). Severe blisters and erosions, hair loss, growth retardation. MNishie et al., 2007
ColXVIII Viable. Abnormal blood vessels in eyes, neuromuscular junction defects, synapse "MFukai et al., 2002,
disorganization. “Ackley et al., 2003
ColXIX Post-natal death (3 weeks). Malnourished, smooth muscle functional defects, smooth MSumiyoshi et al., 2004
muscle transdifferentiation in esophagus inhibited.
Elastin Post-natal death (4 days). Obstructed, stiff and tortuous arteries. MLi et al., 1998,
MWagenseil et al., 2009
Fibrillin Fbn1 Post-natal death (3 weeks). Cardiovascular defects Mpereira et al., 1997
Fbn2 Viable. Syndactyly and defective mesenchymal differentiation, notochord morphogenesis. MArteaga-Solis et al., 2001,
MChaudhry et al., 2001,
*Skoglund et al., 2006
Fibulin Fibulin-1 Perinatal lethal. Haemorrhages, blood loss, vascular, lung and kidney defects MKostka et al., 2001
Fibulin-3 Viable. Reduced reproductivity, early on-set aging. ™McLaughlin et al., 2007
Fibulin-4 Perinatal lethal. Severe elastinopathy in lungs and vasculature ™McLaughlin et al., 2006
Fibulin-5 Viable. Loose skin, excessive abdominal folds, expanded lungs, vascular anomalies MYanagisawa et al., 2002,

™Nakamura et al., 2002

(continued on next page)
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Table 1 (continued)

ECM Isoform/component  Loss-of-function phenotypes Citations
Vitronectin Viable and normal MZheng et al., 1995
Tenascin Tn-C Viable. CNS defects and abnormal locomotive behavior, neural crest migration defects MFukamauchi et al., 1996,
MForsberg et al., 1996,
#Tucker, 2001
Tn-R Viable. Defects in perineural nets and optic nerve. MWeber et al., 1999
Tn-X Viable and normal MMatsumoto et al., 2001
Perlecan 40% embryonic lethal (E10.5), 60% death after birth. Defective cephalic development, broad and ™MArikawa-Hirasawa et al., 1999
bowed long bones, narrow thorax, craniofacial abnormalities, severe cartilage defects
Versican Embryonic lethal (E10.5). Heart defects (mouse mutant hdf maps to versican locus), neural MMjaatvedt et al., 1998,
crest migration defects 2Stigson et al., 1997
Aggrecan Viable. Cleft palate, short limbs, tail and snout, cartilage defects (mouse mutant cmd maps to ™Watanabe et al., 1994
aggrecan locus).
Neurocan Viable. Mild defects in synaptic plasticity ™Zhou et al., 2001
Brevican Viable. Mild defects in long-term potentiation maintenance ™Brakebusch et al., 2002
™ = M. musculus.
4 =D. rerio.
* =X. laevis.
& =(. galus.
¢ =C. elegans.
a

= A. mexicanum.

Glycosaminoglycans (GAGs) are linear unbranched polymers of
repeating disaccharides composed of a hexosamine and a uronic
acid. These molecules have remarkable physical properties attribut-
able to the abundance of carboxyl, hydroxyl and sulfate groups that
define individual GAGs (e.g., chondroitin-, dermatin-, keratin- and
heparan-sulfates). As such they are polyanionic molecules and their
electrostatic properties make them “osmotically active.” Their net
negative charge attracts Na++ and, thus, draws water in causing the
interstitial spaces in which GAGs reside to swell. This swelling can
open up pathways that promote the invasion and migration of cells as

has been suggested for the non-sulfated GAG hyaluronan (HA), which
is correlated with, for example, cancer metastasis and initiation of cell
migration (Toole, 2001). Thus, the regulated expression of hyaluronan
synthases and other enzymes involved in GAG assembly can have
important developmental consequences (Camenisch et al., 2000;
Spicer et al., 2002). With the exception of hyaluronan, all GAGs are
covalently linked to core proteins to form proteoglycans (PGs). HA
does, however, assemble with aggregating PGs and these interactions
are critical for the formation of pericellular matrices, the unique
physical and hydrodynamic properties of which influence morpho-

Functions of ECM
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Fig. 1. Summary of ECM functions in development. The ECM is multi-functional and can influence multiple biochemical and mechanical processes simultaneously. This figure
illustrates different functional states of the ECM and their biological contexts. The five categories are not mutually exclusive. When interpreting ECM loss-of-function phenotypes,
one should consider that multiple processes may be compromised thus specific roles of individual ECM components are difficult to glean. A couple of important properties of ECM are
not illustrated in this cartoon. First, ECMs are highly dynamic and can be modified by the cells that come into contact with them creating a bi-directional mode of cell-matrix
communication. Second, ECM-ECM interactions vary the chemical and mechanical composition of the extracellular microenvironment. In this review, we incorporate several

examples of how the functions of ECM are utilized during embryonic development.
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genetic cell behaviors and regulate the diffusion of many secreted
growth factors and morphogens. The transmembrane receptor for HA,
CD44, also participates in the assembly of the pericellular matrix and
the subsequent propagation of cell signals.

ECM glycoproteins include both the collagens and a diverse array
of non-collagenous proteins such as laminins, tenascins, and fibro-
nectin. A great deal is now known about collagen structure and
function. Collagens are the most abundant proteins in the animal
kingdom and as a general property, function to limit the distensibility
of tissues owing to the enormous tensile strengths of collagen fibrils. A
triple-helical organization of component pro-a-chains defines the
collagens and contributes to the unique physical properties of these
ECM proteins. There are now 28 known collagens and these are the
products of 49 distinct collagen a-chain gene products (Gordon and
Hahn, 2010). Collagens are broadly classified into both fibrillar and
non-fibrillar forms and can also be assembled into reticular networks
and sheets. The organization, distribution and density of fibrils
and networks varies with tissue type, and the direction and
magnitude of forces to which a given tissue is subjected. Heritable
mutations and acquired (e.g., dietary) disruptions in the expression or
function of individual collagens and/or proteins involved in collagen
synthesis, processing and assembly have been known for many years
(Kuivaniemi et al., 1991). One of the first insertional mutations to be
identified in mouse was in the a1(I) collagen gene. The mutation is
embryonic lethal (Schnieke et al., 1983) but surprisingly, embryos
lacking collagen I reach a late stage of development when they die
suddenly from aortic rupture (Lohler et al., 1984), in keeping with the
central role of fibrillar collagen in limiting tissue distensibility.

Non-collagenous glycoproteins of the ECM are represented by
several families of proteins with diverse origins. Many of these ECM
molecules are composed of multiple chains each encoded by distinct
(e.g., laminin trimer) or single (e.g., fibronectin dimer) genes. Further
variation in protein sequence, structure and function can occur
through alternative splicing of expressed transcripts as in the case of
fibronectin, splice variants of which are subject to developmental
stage- and tissue-specific expression (Astrof et al., 2007; DeSimone et
al., 1992; Ffrench-Constant and Hynes, 1989). While the structures of
ECM glycoproteins and the phylogenetic relationships of the genes
that encode them vary widely, many share analogous functions and
common structural motifs. One example is the adhesive Arg-Gly-Asp
(RGD) sequence that resides within a hydrophilic loop of fibronectin,
vitronectin, tenascin and other ECM proteins. RGD sequences are
critical for recognition and binding to many integrins although it is
important to point out that not all ECM glycoproteins have functional
RGD sequences and not all integrins bind RGD. This review focuses
primarily on the functions of non-collagenous ECM glycoproteins in
development but a thorough overview of these ECM proteins and
their receptors is not practical; the reader is instead referred to a
number of other reviews on this subject (Barczyk et al., 2010; Durbeej,
2010; Dzamba et al., 2001; Ramirez and Sakai, 2010).

Together, these distinct groups of ECM molecules provide capacity
for enormous functional complexity. The architecture and assembly of
ECM in embryonic interstitial spaces may provide the structural
integrity needed to promote and, in some cases, restrict cell move-
ments, limit the diffusion of morphogens and provide binding sites for
a number of families of cell surface receptors for ECM, including the
integrins and syndecans. Thus, the ECM can be thought of as
comprising a “morphogenetic language or code” that is interpreted
by the cells that come in contact with it. This “sensing” of embedded
information in the ECM by specialized receptors at the cell surface can
have a profound influence on cell behaviors by affecting not only
pedestrian adhesive functions but also cell polarity, migration and
other intracellular signals that regulate cell survival, proliferation and
differentiation. As we shall see, short and long range physical forces
generated as a consequence of morphogenetic movements can also
alter the availability of cell-interactive and other functional domains

embedded within the matrix and regulate a cell's response to the
extracellular environment. These data demonstrate that our current
knowledge of ECM bears little resemblance to earlier characteriza-
tions of a “passive” matrix holding cells and tissues in place. The
following sections provide a sampling of the widespread functions of
ECM in development and highlight a diversity of mechanisms that
directly or indirectly depend upon the actions of matrix molecules and
their cellular receptors.

ECM in cell and tissue migration

The most familiar developmental function attributed to ECM is
arguably cell migration. Dynamic ECM-integrin binding interactions
are known to facilitate cycles of cell adhesion and deadhesion to
substrate. When these cycles are combined with a contractile
cytoskeleton to generate traction forces on an ECM substrate, cell
locomotion occurs. Isolated migratory cells in vitro often display a
preference for specific ECM molecules depending on the repertoire
and binding activities of the integrins expressed by those cells. It
would be easy to conclude that ECM is little more than “sticky-stuff”
that depends on the right ECM-integrin combination for migration to
proceed. However, ECM can interact with cells through associated
growth factors or cytokines, intracellular signaling, mechanotrans-
duction and cross-regulation with other cell-surface receptors, each of
which may also regulate cell migration. In this review, we will
consider two case-studies that highlight different ways ECM can
influence cell migration: myocardial precursor migration in the
formation of the zebrafish heart tube and neural-crest migration.
Additional interesting examples reviewed elsewhere include primor-
dial germ cell migration (Raz, 2004) and neuronal migration in the
development of the cerebellum (Porcionatto, 2006).

Migration of cardiac precursor cells

The vertebrate heart is first assembled as a linear bilayered tube
composed of an inner endothelial layer and outer muscular layer
(Glickman and Yelon, 2002; Stainier, 2001). Myocardial precursors
initially start to differentiate at the lateral regions on both the right
and left side of the embryo and progressively migrate toward the
midline before fusion with endocardial cells and formation of the
heart tube. Failure of myocardial precursor migration leads to the
condition cardia bifida where two separate hearts form in lateral
positions. Several zebrafish mutations that result in cardia bifida have
been identified including natter, which maps to a mutation in the
fibronectin gene that causes loss of fibronectin expression during
myocardial precursor migration (Trinh and Stainier, 2004). Fibronec-
tin knockdown by a low dose of antisense morpholino also results in
cardia bifida (Matsui et al., 2007).

There are two major tissue locations where fibronectin is
expressed during myocardial precursor migration. Fibronectin is
deposited on (1) the basal surface of the lateral plate mesoderm
that contains the myocardial precursor cells, and (2) at the midline
between the endoderm and endocardial precursors (Trinh and
Stainier, 2004). Cardia bifida can be partially rescued in fibronectin
minus morphant embryos by direct injection of exogenous fibronectin
into the midline region (Matsui et al., 2007) indicating that midline
deposition of fibronectin may play a role in directing myocardial
precursor migration to the center. Analysis of an endocardial mutant
clo where midline fibronectin deposition was absent but fibronectin
around the lateral plate mesoderm was unaffected, resulted in
delayed myocardial migration but not complete inhibition of the
migration process itself (Trinh and Stainier, 2004). Thus midline
fibronectin may be important for the timing of myocardial precursor
migration but not strictly required for migration per se. Cardia
bifida was also observed in embryos lacking Mtx1, a transcription
factor controlling fibronectin expression (Sakaguchi et al., 2006).
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However, Mtx1 depletion also resulted in reduced laminin deposition
(Sakaguchi et al., 2006), thus, the ECM-dependent defect in myocardial
precursor migration may depend on multiple ECM proteins.

It is clear from the natter mutant that fibronectin also plays a role
in organizing the polarity of myocardial precursor cells. These cells
migrate as a coherent mass to form polarized epithelia (Trinh and
Stainier, 2004). In the natter mutant, apical and junctional markers
aPKC and ZO-1 became mislocalized, and the organization of the
myocardial precursors into polarized epithelia was disrupted (Trinh
and Stainier, 2004). Cell-ECM interactions in this tissue are important
for specification of polarity, which in turn is important for migration.

Interestingly, the natter mutation genetically interacts with
another cardia bifida mutation, miles-apart (Matsui et al., 2007),
which encodes a lysosphingolipid G-protein coupled receptor
(Kupperman et al., 2000). Cultured zebrafish cells from the miles-
apart mutant show decreased adhesion to fibronectin but not laminin
in vitro, which can be rescued by addition of sphingosine phosphate 1
(SP1), the ligand for the miles-apart receptor (Matsui et al., 2007).
Additionally, a mutation in Spns2, a multipass transmembrane protein
that is important for export of SP1 also causes cardia bifida (Kawahara
et al, 2009). However, the mechanism by which ECM and SP1
coordinate to regulate migration is still unknown. The lessons learnt
from studies of myocardial precursor migration are that ECM can
influence cell migration through regulation of adhesion and polarity,
providing/maintaining temporal cues, influencing the presence of
other matrix proteins such as laminin and crosstalk with signaling
factors and their receptors.

Neural crest cell migration

Another important migratory population of cells within the
developing embryo is the neural crest. Neural crest cells are induced
at the border of the neural plate and the non-neural ectoderm (Knecht
and Bronner-Fraser, 2002). During neural tube closure, neural crest
precursors are incorporated into the dorsal neural tube from where
they delaminate and migrate in streams to far reaches of the embryo.
Derivatives of neural crest include neurons and glia, craniofacial
cartilage and bone, pigment cells, connective tissue and sympatho-
adrenal cells (Knecht and Bronner-Fraser, 2002). Over the years,
numerous factors have been identified as important regulators of
neural crest migration including, but not restricted to BMPs and their
antagonists, Wnts, Hox genes, E-cadherin, Ephrins, Eph receptors,
MMPs and ECM (Christiansen et al., 2000).

A conditional knockout of P1 integrin in mouse neural crest
precursor cells resulted in severe neuronal defects that were
ultimately lethal one month after birth (Pietri et al., 2004). Migration
of neural crest cell derivatives such as Schwann cells was defective in
addition to other abrogated processes that included delayed matura-
tion of Schwann cells and defective axo-glial segregation (Pietri et al.,
2004). However there were also changes in the patterns of deposition
for fibronectin, laminin, tenascin and collagen IV. This highlights the
difficulty in deciphering the roles of ECM in vivo because perturba-
tions of one factor can lead to a cascade of changes involving multiple
cell-ECM interactions.

The mechanisms responsible for directed migration of subsets of
neural crest cells are complex. Neural crest migrates along ECM and
individual ECM molecules support different migratory behaviors. The
neural crest streams of mice lacking laminin a5 are expanded (Coles
et al., 2006). This suggests that laminin a5 may function normally to
restrict migration into narrow streams. Other ECM components have
been shown to attract or repel migrating neural crest. Implanted
micromembranes of PG/M-versican isoforms VO and V1 attract neural
crest cells whereas micromembranes of aggrecan cause migratory
cells to arrest near the implant (Perissinotto et al., 2000). Expression
patterns of these two types of proteoglycans are largely complimen-
tary and non-overlapping suggesting that sub-populations of neural

crest cells may migrate on versican-containing matrix and avoid
aggrecan-containing matrix.

Cell migration speed obeys a bell-curve distribution relative to
concentration of substrate ECM (Palecek et al., 1997), with maximal
migration speed achieved at an intermediate concentration of ECM
that facilitates both adhesion and deadhesion of cell-substrate
contacts. One way in which directed cell migration occurs is by
haptotaxis where cells migrate along a gradient of ECM molecule
concentration. Cells move away from regions of low ECM concentra-
tion where adhesion is weak, and move toward regions of higher ECM
concentration where migration will slow or arrest if adhesive strength
is too great. In general, gradients of ECM concentration in the paths of
migratory cells have been difficult to confirm. One example is that of
tenascin, which is expressed in the avian neural tube in a dorsoventral
gradient visualized by immunostaining (Bronner-Fraser, 1988). When
antisense Tenascin-C morpholinos were electroporated into the
neural tube, defects in neural crest migration were observed (Tucker,
2001) supporting the idea that tenascin may provide an adhesive
substrate that facilitates haptotactic migration for at least some
stretches of the neural crest migratory pathway.

Composition of ECM may also dictate the migration speed of cells
that come in contact with it. Individual ECM molecules can have
differing effects on the adhesion and/or rate of migration in different
cell types. For example, cranial neural crest cells migrate faster than
trunk neural crest cells on laminin although both cell types migrate at
the same speed on fibronectin (Strachan and Condic, 2003).

Degradation of ECM substrates by proteases provides another
important mechanism for the regulation of cell migration. Proteases
from both the matrix metalloproteinase (MMP) and ADAM families
are implicated in neural crest migration. For example, ADAM13
protease activity is required for normal cranial neural crest cell
migration in Xenopus (Alfandari et al., 2001). ADAM13 degrades
fibronectin in vitro, however, more recent work also demonstrates
involvement in neural crest induction through modulation of Ephrin B
signaling (Wei and DeSimone, unpublished observations). Although
MMPs and ADAMs are known to degrade ECM components, they also
target for cleavage components of several signaling pathways
including various growth factor receptors, Eph/Ephrins, and notch
and delta. So once again, observed migration defects following loss-of-
function of a given protease known to degrade ECM could also be
regulating the activities of additional non-ECM substrates to affect
adhesion and migration.

ECM in branching morphogenesis

The development of branched organs involves the invasion of
epithelial buds and tubes into surrounding embryonic mesenchyme
rich in ECM, and this process is key to building many composite
tissues. Branching also provides an interesting example of the
multiple roles played by ECM in morphogenesis. Proteoglycans,
GAGs, collagens and many other ECM glycoproteins have all been
implicated as important regulators of mammary gland, salivary gland,
kidney, gut and lung development. The branching units are
surrounded by microenvironments of ECM that change in composi-
tion and spatial distribution over time. This dynamic characteristic
makes it challenging to establish functional roles for individual ECM
components.

Manipulations that either reduce or promote ECM molecule
deposition often inhibit branching. In mammary gland cultures, for
example, both the addition of collagenase and the stimulation of
collagen expression by TGF3 can perturb branching and ductal growth
(Fataetal.,, 2004; Silberstein et al., 1990; Wicha et al., 1980). Similarly,
a function blocking antibody directed against the laminin al G-
domain inhibits branching of ex vivo salivary gland organ cultures as
does addition of synthetic laminin a1 G-domain peptides that are
competent to bind to syndecan-1, its relevant cell-surface receptor
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(Patel et al., 2006). The presence or absence of a given ECM
component cannot be viewed simply as providing “stop or go” signal
for branching morphogenesis. ECMs can serve alternatively as
substrates for cell adhesion, barriers to invasion that require
degradation for branching to proceed, ligation of cell surface receptors
that impact cell signaling, sequestration and/or presentation of
growth factors and cytokines, and as mechanical cues vital to the
branching process. Thus a given ECM component may have functions
that both promote and attenuate cell behaviors important for
branching depending upon the spatiotemporal context of its expres-
sion. It is the combinatorial effect of multiple ECM molecules as well as
the dynamic regulation of ECM accumulation and degradation that
instruct the morphogenesis of branching.

Expression and modification of the ECM microenvironment

Simple analysis of the heterogeneity of ECM expression patterns
along branching structures provides some clues as to the function of a
given ECM molecule. The branching units of the mammary gland
system are the terminal end buds that accumulate a thick ECM around
bud flanks composed mostly of collagen IV, laminin 1, laminin 5 and
heparin sulfate proteoglycans (Fata et al., 2004), whereas a thinner
ECM rich in hyaluronic acid is present at the end bud tips (Silberstein
and Daniel, 1982). Reduced collagen around the end bud tips may be
just as important as the enhanced accumulation of collagen around
the flanks. A fibrous ECM surrounding the ducts helps maintain its
tubular organization (Hinck and Silberstein, 2005). In contrast,
mammary gland cultures exposed to a 31 integrin activating antibody
that enhances binding to collagen inhibited branching (Alford et al.,
1998), suggesting that migratory epithelial cells at the end bud tips
may normally be required to reduce adhesion to ECM in order to
invade the mesenchyme.

However, it is important to point out that fibrous ECM is not
simply a physical barrier requiring degradation or modification in
regions where cell migration is to occur. The mammary gland
expresses discoidin domain receptors (DDR), receptor tyrosine
kinases that become phosphorylated when ligated by fibrillar collagen
but not denatured collagen fragments (Vogel et al., 2001). Loss of
DDR1 causes defects in mammary gland branching in part due to
hyperproliferation suggesting that activation of DDR1 normally
promotes a quiescent state (Vogel et al., 2001). In this case, a collagen
rich ECM at bud flanks is required for a signaling function.
Interestingly, loss of DDR1 also causes increased collagen deposition
around the ducts, which implies that DDR1 function and collagen
expression and/or accumulation are linked. Additionally, this also
suggests that the amount, and not just composition of ECM may also
be important to the regulation of branching morphogenesis.

Degradation of ECM may serve other roles in addition to removing
a matrix “barrier”. For example, collagen cleavage produces biolog-
ically active fragments such as tumstatin and endostatin that can in
turn, regulate migration, proliferation, and cell survival (Ortega and
Werb, 2002). ECM degradation can also release important signaling
molecules such as Areg, Wnts, TGF3 and FGF, which have been shown
to regulate branching (Sternlicht et al., 2006).

Analyses of ECM expression patterns in branching organs highlight
the difficulty of analyzing contributions of ECM to morphogenesis. The
developing kidney expresses unique and transient combinations of
ECM proteins and their receptors in various sub-compartments of the
organ (reviewed in Kanwar et al., 2004). However the requirement for
such exquisite patterns of expression is not clear because these
patterns vary widely between species. Additionally, many single gene
knockout mouse models for ECM components do not result in kidney
defects in vivo, suggesting that there is extensive functional
compensation possible in this and other organ systems. Nevertheless,
native ECM composition and organization provides the context within
which pro-branching contributors operate. Data obtained using the

mammary gland system have shown that blocking the function of
a3B1 integrin, a laminin and collagen receptor, has opposing effects
depending on the ECM present in the culture. Branching is enhanced
in collagen I gels (Berdichevsky et al, 1994) but inhibited when
mammary glands are cultured on laminin-rich basement membrane
gels (Stahl et al,, 1997). This demonstrates that the function of the
same integrin can likely vary depending on the ECM composition of
the microenvironment.

Finally, differential expression of integrin and non-integrin ECM
receptors has been proposed to regulate branching by maintaining
pro-migratory and pro-proliferative signals at the growing end bud
tips while maintaining constraining and anti-proliferative signals at
the bud flanks and ducts (Fata et al., 2004). However, data on the
expression patterns of ECM receptors (as opposed to many ECM
molecules) in branched organs, unfortunately, remains limited.

The importance of ECM architecture to branching

If all required proliferative, migratory, polarity and survival cues
could be supplied to cells in the absence of ECM, it is difficult to
imagine that they would default to anything other than a growing ball
of tissue. ECM provides both elastic and rigid elements that likely
participate in the propagation and/or resistance of forces needed to
sculpt tissues into functioning organ structures. On a macro scale,
ECM-cell interactions likely contribute mechanical stiffness for
morphogenesis to proceed normally. When grown in mechanically
loaded collagen gels, mammary epithelial cells fail to express 3-casein
and differentiate (Paszek and Weaver, 2004). Furthermore, using
collagen and basement membrane gels calibrated for specific
elasticities, it was demonstrated that highly rigid ECM inhibits
branching and instead promotes cell spreading and focal adhesion
formation (Paszek et al., 2005).

On a micro-scale, local anisotropies in the distribution of tension
could determine where and when branch points occur. Hinck and
Silberstein (2005) suggested that asymmetric induction of sulfated
GAGs (SGAGs) at the mammary gland terminal end bud could be
responsible for altering branch direction and/or end bud bifurcation.
Deposition of SGAGs followed by accumulation of collagen I creates a
thickened and relatively inelastic ECM (compared to the collagen-free
end bud tip) that acts as a girdle around the end bud at a time when
constriction to ductal dimensions occurs. In the salivary gland, lung
and kidney similar models for initiation of branching have been
proposed. Fibronectin, which stimulates branching when supplied
exogenously, transiently accumulates at early clefts (Sakai et al.,
2003). Human salivary gland epithelial cells exposed to pre-
aggregated cellular fibronectin induced the formation of local cell-
matrix complexes including integrins and the cytoskeletal protein
paxilin while downregulating cell-surface E-cadherin in adjacent cells
(Sakai et al., 2003). Fibronectin may function to form clefts by
converting cell-cell adhesions to cell-matrix adhesions. Additionally,
local depositions of fibronectin may function to promote assembly of
collagen III, which has been shown to accumulate where clefts form
(Nakanishi et al., 1988) perhaps to provide a rigid support to stabilize
the cleft.

The role of ECM in branching morphogenesis is not limited to just
structural support. ECM binding to cell-surface receptors can induce
signaling cascades that lead to transcription of important growth
factors. In the developing kidney, ligation of 831 by the ECM protein
nephronectin is important for induction of glial cell-line derived
neurotrophic factor (GDNF) which is a key regulator of uteric bud
formation and branching (Linton et al., 2007). Genetic deletions of a8
integrin and nephronectin cause kidney agenesis, which can be
rescued by deleting Sprouty, an antagonist of the GDNF receptor RET
(Linton et al., 2007), which further supports the argument that the
role of nephronectin is to stimulate GDNF expression. In the
mammary gland system, ECM-B1 integrin interactions are upstream
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of a well-defined signaling cascade for B-casein transcription and
therefore mammary epithelial cell differentiation. Additionally, ECM
may function to sequester morphogens and other secreted proteins
that can be released by proteolysis. Examples of these ECM functions
are further discussed later in this review.

Individual ECM molecules in the microenvironment may also
impact the expression and/or accumulation of other bioactive ECM
molecules. For example, mammary epithelial cells on laminin down-
regulate expression of fibronectin. Levels of fibronectin are observed
to change during mammary gland branching; it is more abundant
during proliferative stages but is subsequently down-regulated
during the growth arrest stage preceding acinar differentiation
(Williams et al., 2008). Thus the spatio-temporal regulation of one
ECM component can influence the abundance of other components
that may provide additional cues for morphogenesis.

Structural contributions of ECMs

Throughout morphogenesis, motile cells undergo changes in
shape, protrusive activity and polarity while exerting force on
neighboring cells and tissues in order to generate structures such as
tubes, rods, sheets and cavities. ECM can play important structural
roles in these processes by contributing anisotropies in the extracel-
lular microenvironment or by defining tissue boundaries as discussed
for branching morphogenesis.

During elongation of the chordate embryonic axis, extension of the
notochord, somitic mesoderm and neural tube all occur in the
anterior-posterior direction (reviewed in Keller et al., 2000).
Regulation of axis elongation involves multiple mechanisms including
non-canonical Wnt/PCP signaling, cytoskeletal remodeling/contrac-
tility, differential cell adhesion and ECM. In Xenopus, fibronectin,
fibrillin and laminin are each expressed as fibrillar matrices in slightly
different patterns around the notochord and presomitic mesoderm
(Davidson et al., 2004; Fey and Hausen, 1990; Skoglund et al., 2006).
Knockdown of fibronectin or fibrillin by antisense morpholinos in
Xenopus causes defects in convergent extension of the notochord and
presomitic mesoderm (Davidson et al., 2006; Skoglund et al., 2006)
although in the case of fibronectin the importance of fibrils is less clear
(Rozario et al., 2009; discussed further below). Structural support for
notochord elongation may rely on other ECM proteins such as fibrillin
(Gansner et al., 2008; Skoglund et al., 2006; Bette Dzamba, personal
communication).

Within the notochord, at least two distinct cell behaviors can be
observed during convergent extension. Notochord cells adopt a
spindle-shaped morphology and make bipolar protrusions, which
are proposed to “tug” on neighboring cells and drive mediolateral
intercalation behavior. Cells at the notochord-somite boundary
become quiescent as they contact the ECM at the boundary provoking
speculation that a “boundary capture” mechanism may be at play to
resolve the separation between the notochord and presomitic
mesoderm and inhibit notochordal cells from breaching the boundary.
A study of notochord morphogenesis in the tunicate Ciona has
identified laminin as an important player in notochord elongation
potentially through a boundary-capture mechanism (Veeman et al.,
2008). The mutant chongmague which maps to laminina3/4/5 is
defective in axis elongation with notochordal cells failing to recognize
the notochord-somite boundary and becoming dispersed in the larval
tail (Veeman et al., 2008). A laminin loss-of-function study in Xenopus
has not been reported. However, there may be a role for laminin in
somite morphogenesis. Morpholino knockdown of dystroglycan, a
laminin receptor, causes reduced somitic cell size, number and
integrity (Hidalgo et al., 2009). Distroglycan morphants also exhibited
a marked reduction in deposition of laminin around the somites.
Knockdown of integrin a6 subunit containing laminin receptors also
causes defects in axis elongation by abrogating neural extension and
neural tube closure (Lallier and DeSimone, 2000; Lallier et al., 1996).

To complicate matters further, the zebrafish laminin mutants grumpy,
sleepy and bashful cause defects in notochord differentiation (Parsons
et al.,, 2002; Pollard et al., 2006). Thus laminin may play multiple roles
in organization and extension of the notochord, somites and neural
tube that are crucial to proper embryo elongation.

Collagens play major roles in providing structural stiffness and
cohesiveness to tissues and their ECMs. Loss of collagen III, V, VII and
XVII compromise the integrity of skin, vasculature, connective tissue
and eyes (Andrikopoulos et al., 1995; Heinonen et al., 1999; Liu et al.,
1997; Nishie et al., 2007). Collagen IIl and V are both needed to
facilitate the assembly of collagen I (the most abundant collagen
protein) into fibrils and fibers. The loss of such fibers and fibrils cause
devastating consequences such as skin blistering and blood vessel
rupture (Andrikopoulos et al., 1995; Liu et al., 1997). Some laminin
chains have also been implicated in functioning as a structural
component critical to the integrity of skin. Mutations in laminin 33
and y2 result in poorly developed hemidesmosomes that lead to
severe skin blistering (Kuster et al., 1997; Meng et al., 2003).

Contributions of elastic tissues

While tissue stiffness imparted by ECM plays an important role in
morphogenesis, it is clear that tissue “pliability” and elasticity are also
critical. Some tissues respond to physical forces acting upon them by
folding, bending or stretching and in the case of the walls of muscular
arteries and alveoli, elastic recoil is essential for proper tissue and
organ functions. The elastic matrices (including elastic fibers and
sheets) that impart these tissue properties are composed of the ECM
protein elastin as well as unbranched microfibrils that are thought to
form scaffolds important for the nucleation and assembly of elastin
(reviewed in Mithieux and Weiss, 2005). Microfibrils can be
composed of many different proteins including fibulins, fibrillins,
microfibril-associated glycoprotein-1 (MAGP-1), emilin and vitronec-
tin. Although elastin comprises ~90% dry weight of formed elastic
fibers, the microfibrillar components are critical for function. For
example, fibulins were found to be important regulators of tissue
elasticity. Loss of fibulin-4 or -5 causes reduced elasticity in the lungs,
skin and vasculature leading to malformations such as loose skin and
contorted aortas (McLaughlin et al., 2006; Nakamura et al., 2002;
Yanagisawa et al., 2002).

In developing arteries, elastin is organized into concentric sheets
or elastic laminae that are in turn associated with collagen fibrils and
layers of smooth muscle cells (Wagenseil and Mecham, 2009).
Homozygous null elastin knockout mice (Eln —/—) die shortly after
birth from obstructed arteries (Li et al., 1998). Interestingly, loss of
elastin leads to overproliferation and disorganization of smooth
muscle in the vessel wall. These arteries become stiff and tortuous,
and cellular infiltration into the lumen occurs, which is the cause
ultimately for blocked arteries in these embryos (Li et al., 1998;
Wagenseil et al., 2009). Interestingly, heterozygous elastin knockout
mice (Eln +/—) survive to adulthood with normal cardiac function
but with higher blood pressure (Wagenseil et al., 2009). Increased
deposition of elastin or collagen was not observed in Eln +/— mice.
Instead, the arteries form in the presence of low levels of elastin with
increased smooth muscle cell differentiation. The result is an increase
in arterial wall thickness, which may represent an adaptive response
to decreased circumferential wall stress relative to normal wild-type
vessels (Wagenseil et al., 2009). These studies suggest a physiological
adaptive feedback mechanism between hemodynamics and vascular
remodeling that is further dependent on the elastic matrix, which may
explain why Eln+/— mice are viable.

ECM and tissue asymmetry

The process of amniote gut looping provides one interesting
example of how the combinatorial effects of ECM and cell and tissue
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generated forces can produce local anisotropies that facilitate
morphogenesis. The characteristic counter-clockwise turning of the
intestine is established by left-right asymmetric cellular and
molecular events early in the formation of the gut. A leftward tilt is
initiated in the primitive gut by several different processes that vary
across species. Left-right asymmetry in the amniote gut is caused by
cellular asymmetries in the dorsal mesentery; a structure that
suspends the primitive gut from the body wall composed of
mesenchymal cells wrapped in a layer of epithelial cells (Davis et
al.,, 2008). On the right side, the epithelial cells are flattened and
cuboidal while the mesenchymal cells are sparsely distributed. On the
left side the epithelial cells are columnar and the mesenchymal cells
are densely packed (Davis et al., 2008). Unlike in Xenopus, no
asymmetries in cell proliferation, cell death or cell migration dyamics
were observed in the developing avian gut (Davis et al., 2008).

In silico modeling revealed that leftward tilting within the dorsal
mesentery could be achieved under conditions where, on the right
side, ECM volume is increased and cell-cell adhesion is decreased,
whereas on the left side, ECM volume is decreased and cell-cell
adhesion is increased (Kurpios et al., 2008). Indeed, left-right
asymmetries in ECM composition are observed within the dorsal
mesentery with increased GAGs and basement membrane compo-
nents on the left side and increased hyaluronan on the right side
(Kurpios et al., 2008). Hyaluronan attracts water and promotes the
swelling of matrix and additionally can inhibit cell-cell adhesion by
forming a porous coat around cells (Brown and Papaioannou, 1993;
Haddon and Lewis, 1991). Thus the asymmetric deposition of
hyaluronan on the right side of the dorsal mesentery has the ability
to create conditions that promote leftward tilting. Left-right asym-
metric expression of the cell adhesion molecule N-cadherin was also
observed. N-cadherin expression is regulated by the transcription
factor Pitx2, which is preferentially expressed on the left side (Kurpios
et al., 2008). Misexperession of N-cadherin in the dorsal mesentery
results in changes in ECM composition that are inhibitory to the
leftward tilt (Kurpios et al., 2008) indicating that there is cross-
regulation between cell-cell and cell-ECM interactions in order to
create optimal conditions for gut looping.

ECM in growth factor signaling

ECM can bind soluble/secreted factors, maintain them in the
extracellular spaces and thereby function as a repository. The
consequence of such interactions may be to restrict or promote
access of ligands to cognate cell-surface receptors, to modulate the
spatial distribution of a diffusable morphogen, or to sequester factors
for subsequent release. Indeed, there is much speculation about the
potential role of ECM in regulating extracellular signaling though it
remains an understudied question.

Role of ECM in TGFJ activation

The best understood example of the role of ECM involvement in
growth factor signaling comes from studies of the latent TGF3 binding
proteins (LTBPs). Secreted TGFP covalently dimerizes with its cleaved
latency-associated propeptide (LAP), in an inactive complex. LAP
binds LTBPs, which contain binding sequences for various integrins
(i.e, RGD) and other ECM molecules like fibrillin, vitronectin and
fibronectin. TGFR-LAP-LTBP-ECM interactions form the so-called
large latent complexes (LLCs) that are maintained in the extracellular
space, inaccessible to cell-surface TGFR receptors (reviewed in Wipff
and Hinz, 2008).

A number of different pathways have been described to explain
how TGFp can be released from LLCs. Proteolytic cleavage of ECM and
LTBPs in LLCs by BMP-1, MMPs, plasmin, urokinase, elastase, thrombin
and cathepsin can relieve the inhibition of TGF3 (Wipff and Hinz,
2008). In some cases, the LTBP-ECM interaction occurs via heparin

sulfate (Chen et al, 2007) and thus is subject to regulation by
glycosidases as well. Spatial-temporal regulation of protease expres-
sion or secretion could control when and where active TGF3 is
released. In some systems, the proteolytic cleavage is dependent on
the presence of specific integrins suggesting that the proteolysis and
ECM-integrin interactions are linked. It is possible that integrins
provide a common docking site that brings the proteases and ECM
into close proximity (Wipff and Hinz, 2008). Thus modulation of the
affinity of integrins for relevant ECM binding may influence the
degree of TGFp signaling. Another contribution that integrins may
make is to present the cell-surface receptor to the active ligand; avpR3
integrin has been shown to interact with the receptor TGF-3-RII upon
stimulation with active TGF31 in lung fibroblasts (Scaffidi et al., 2004).

Another interesting TGFJ activation strategy involves the me-
chanical coupling of integrin-ECM linkages. Integrins are linked
intracellularly to cytoskleletal elements and associated contractile
machinery, and extracellularly to ECM. Thus contractility of a cell
bound to a rigid ECM generates force between a matrix molecule and
its receptor. Such forces may uncouple LLCs so as to free TGF3. The
small GTPase RhoA has well established roles in contractility and has
been shown to promote TGF3 activation from LLCs (Jenkins et al.,
2006). Additionally, interactions of the actin cytoskeleton with the
integrin cytoplasmic tail are necessary for TGF-p activation (Munger
et al., 1999). These observations suggest that TGF signaling may be
“tuned” by mechanical inputs affected by the composition and rigidity
of the ECM, and the motility/movement of cells and tissues in contact
with ECM.

TGFP activation from LLCs has been implicated as a major
regulatory event in cardiac development. LTBPs are expressed in
developing hearts of murine and avian embryos and LTBP knock-
downs result in severe cardiac (Ghosh and Brauer, 1996; Todorovic et
al.,, 2007) and pulmonary (Sterner-Kock et al., 2002) defects.
Interestingly, the contractility of myofibroblasts themselves can
release latent TGF3 (Wipff et al, 2007). The cardiac system is a
particularly intriguing model for the study of how cellular contrac-
tility and linkage to ECM may influence the level of growth factor
signaling although little of this work has yet been done in vivo.

Latent TGF-B activation has also been implicated in bone
development where LTBP-fibrillin co-localization occurs in embryonic
long bones (Dallas et al., 2000). In addition, exogenously supplied
LTBPs were shown to shift sensitivity of Xenopus ectoderm for the
mesoderm inducer activin, a TGFR-superfamily member (Altmann et
al.,, 2002). This suggests that mesoderm induction may depend on
latent-TGF-( activation though this has not yet been demonstrated in
vivo.

ECM, syndecans and other growth factors

ECM participates in FGF signaling during the development of the
mouse salivary mandibular gland (SMG). FGF10-FGFR2b signaling is
crucial for development of the SMG. FGF10 binds the receptor with
higher affinity when present in a ternary complex with heparan
sulfate (Kan et al., 1999; Pantoliano et al., 1994). Basement membrane
around the SMG was found to contain perlecan-heparan sulfate,
which can be released by proteolysis by heparanase (Patel et al.,
2007). Interestingly, addition of exogenous heparanase to ex vivo SMG
cultures enhanced branching (Patel et al, 2007). Thus ECM can
sequester a co-factor like heparan sulfate that is released upon
expression of an appropriate endoglycosidase like heparanase.

The non-integrin ECM receptor, syndecan is known to be
important in growth factor signaling. Syndecans bind growth factor
ligands through their heparan- and chondroitin-sulfate glycosamino-
glycan side chains (Carey, 1997). Expression of different syndecan
isoforms is often spatially and temporally regulated through devel-
opment suggesting that these transmembrane proteoglycans play key
signaling roles. However, syndecans bind to a large variety of growth
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factors including FGF, PDGF, EGF, HGF and VEGF (Carey, 1997) and
thus surface expression of syndecan may indicate the activation of
multiple cell signaling pathways. Syndecans may increase affinity for
growth factor binding to their receptors (Carey, 1997; Oehrl and
Panayotou, 2008) by sequestering ligands close to the cell surface and
increasing the effective concentration of available ligand. Further-
more, there have been examples of syndecans displaying different
affinities for specific ligands. In the developing mouse neurepithelium,
syndecan-1 switches from binding bFGF to aFGF in a temporally
regulated manner (Nurcombe et al., 1993).

Syndecan-2 has been shown to play an important role in the
specification of left/right asymmetry in Xenopus. Dominant-negative
and targeted morpholino knockdown of syndecan-2 causes hetero-
taxia (reversed heart/gut looping) (Kramer and Yost, 2002). Hetero-
taxia was dependent on gycoasminoglycan side-chain addition to
syndecan-2 and could be rescued by expression of the growth factor
Vg-1 (Kramer and Yost, 2002). Syndecan-2 coimmunoprecipitates
with Vg-1 suggesting that binding of Vg-1 by syndecan-2 is an
important step in left/right asymmetry specification.

The ability of ECM to bind growth factors may also regulate
chemotactic events. In the Xenopus gastrula, mesodermal cells
migrate along an assembled fibronectin matrix on the animal cap
ectoderm toward the animal pole of the embryo. Disassociated
mesoderm cells or cell aggregates migrate in a random fashion
when plated on plasma fibronectin in vitro suggesting that some
directional cue has been lost. However, on substrates conditioned
with matrix from an intact animal ectoderm, mesoderm aggregates
migrate directionally toward the animal pole as they would in vivo
(Nagel et al., 2004). This directional migration was perturbed when a
dominant negative PDGFRa receptor was expressed in the mesoderm
or dominant negative PDGFA ligand was expressed in the animal
ectoderm prior to substrate conditioning (Nagel et al., 2004).
Additionally, a truncated form of PDGFA lacking the matrix binding
domain was unable to support directional migration. Thus the ECM
from the ectoderm likely binds PDGF to set up a chemotactic gradient
to guide cell migration.

ECM may also sequester other proteins (that aren't growth factors
themselves) but that modulate signaling pathways. Cyr61 was
discovered as a matrix-associated protein during Xenopus gastrula-
tion. It appears to “buffer” Wnt-signaling activity; enhancing the
canonical Wnt pathway when the Wnt ligand is present in low
abundance but inhibiting the pathway when Wnt is present in excess,
through yet unknown mechanisms (Latinkic et al., 2003). All these
examples indicate that ECM provides a rich signaling environment
important for a range of developmental decisions.

ECM in differentiation

In addition to roles in morphogenesis through regulation of cell
adhesion, motility and polarity, ECM also functions in the specification
of cell fates. The spatio-temporal regulation of ECM expression and
deposition suggests that ECM may provide permissive and even
instructive differentiation signals. In the mouse limb bud, myogenic
differentiation occurs as laminin, collagen IV and nidogen (entactin)
expression increases whereas fibronectin expression decreases
(Godfrey and Gradall, 1998). While this is correlative, it suggests
that different ECM molecules may have opposing functions in the
specification of particular cell fates. Entactin was shown to promote
myogenic differentiation in vitro (Neu et al., 2006) though a function
for fibronectin as a suppressor of myogenic fate has not been reported.

Such observations have prompted a plethora of studies investi-
gating which ECM components induce differentiation of adult stem
cells, embryonic stem cells and multipotent embryonic precursor cell
populations in vitro. The physiological relevance of these studies is
often difficult to surmise because complimentary ECM loss-of-
function manipulations either produce multiple defects in addition

to defects in differentiation or mild and subtle defects because of
compensation by other ECM components. Nevertheless, such studies
have provided us with insights into the relationship between the
microenvironment and specification of cell fates.

For example, it was long believed that embryonic stem cells from
the inner cell mass of the mouse blastocysts were no longer
competent to make trophoblastic cells that are crucial in invading
the maternal uterine wall and establishing the placenta. However,
microarray analysis of embryonic stem (ES) cells plated on collagen IV
uncovered expression of trophoblastic markers (Schenke-Layland et
al.,, 2007). The authors confirmed that ES cells were able to
differentiate into a throphoblastic lineage on a feeder layer coated
with collagen IV but not laminin, fibronectin or collagen I. This
suggests that the inner cell mass is indeed competent to differentiate
into throphoblasts given the right environmental cues.

While it is attractive to imagine that specific ECM molecules
dictate particular cells fates, not surprisingly, the reality is more
complex. Laminin alone has been shown to promote specific fates in
different tissues. Mouse and human neural stem cell precursors
differentiate into neurons, astrocytes and specific glia on laminin but
not fibronectin (Flanagan et al., 2006). At the same time, multipotent
embryonic lung cells can be induced to differentiate into smooth
muscle cells on laminin as well (Nguyen and Senior, 2006; Relan et al.,
1999). However, not all laminin isoforms are competent to induce cell
differentiation (Nguyen and Senior, 2006) suggesting that there may
indeed be exquisite specificity in how ECM influences differentiation.

How might ECM influence cell fate decisions in vivo? One obvious
answer has already been considered; that morphogens and cytokines
are stored or displayed by ECM components and cells receive these
signals as they come into contact with assembled ECM or when the
associated factors are released by proteolysis. There are certainly
examples of cross-talk between growth factor signaling and ECM that
result in cell fate specification. The loss of tendon cell differentiation in
Drosophila following PS integrin knockouts can be rescued by
upregulation of EGF signaling suggesting an interesting cross-
regulation between the ECM and EGF (Martin-Bermudo, 2000).
Tenascin-C promotes glial cell differentiation via regulation of Wnt
signaling (Ruiz et al., 2004). Syndecan-4 has also been shown to
influence neural induction in Xenopus via FGF and ERK signaling
pathways (Kuriyama and Mayor, 2009).

In recent years, a new and more direct connection between ECM
and cell fate specification has come to light. Physical and mechanical
cues from the microenvironment transmitted through the ECM-
integrin interaction may directly influence nuclear events (reviewed
in Wang et al., 2009). Thus, a new and exciting field of mechan-
otransduction that involves ECM and its role in cell fate specification
has begun to emerge.

Contributions of physical properties of ECMs

In an elegant series of experiments, Engler et al. (2006)
demonstrated that mesenchymal stem cell (MSC) fates can be
determined by the stiffness of the ECM substrate. MSCs plated on
collagen gels “tuned” to mimic the elasticity of brain, muscle or bone
tissues gave rise to neurogenic, myogenic and osteogenic cell fates,
respectively. Some computational models predict that signal trans-
duction by mechanical force can operate significantly faster than that
of soluble growth factor signaling pathways (Na et al., 2008). This
brings up the interesting question of whether rapid response to force
generation in embryos could serve to regulate some cell fate decisions.
A number of molecular players have been implicated in mechanisms
of mechanotransduction involving ECM. Integrins coupling to the
cytoskeletal network can extend to the nuclear scaffold via the LINK
complex, composed of nesprins, sun and lamin proteins (Wang et al.,
2009). The nuclear lamin scaffold in turn, may influence nuclear
organization, chromatin modification, transcriptional regulation and



T. Rozario, D.W. DeSimone / Developmental Biology 341 (2010) 126-140 135

mRNA processing. Specific nuclear scaffold proteins such as RUNX
have also been implicated in regulation of differentiation (Stein et al.,
2007). RUNX is a negative regulator of the segment polarity gene,
engrailed in Drosophila and the thymocyte specification factor CD4
in mice (Durst and Hiebert, 2004). Also, nuclear membrane
association of RUNX is a developmentally regulated process that
plays a role in osteoblast specification (Lindenmuth et al., 1997).

Physical forces acting on the ECM itself can affect how cells receive
cues from the environment. Stretching of fibronectin reveals cryptic
integrin binding sites and also influences the affinity for integrin
ligation and clustering (Baneyx et al, 2002; Vogel, 2006). Such
changes may be expected to influence adhesivity of the cells that
contact a stretched matrix, but also has been shown to influence
differentiation. A fibronectin fragment containing a Leu 1048 to Pro
mutation in the cell binding region stabilizes the conformation of this
fragment to favor high affinity binding specifically to a531. This
fragment was further shown to promote osteogenic differentiation of
MSCs (Martino et al., 2009). The biological activity of this fragment of
fibronectin could be reversed using a function blocking antibody
against a5p1 but not av3. How the conformation of ECM molecules
may be affected in vivo by physical forces is an intriguing question. It
may be dependent on the composition of ECMs and dynamic
reciprocal interactions with the very cells that are receiving matrix-
derived signals.

Additionally, ECM may indirectly affect differentiation by regulat-
ing cell shape. Micropatterned ECM substrates have been used to
constrain the shapes of cells in culture (e.g., rounded vs. elongated or
spread cells) and under such conditions cell shape was shown to
influence cell fate (Guilak et al., 2009; McBeath et al., 2004). In fact,
mesenchymal stem cells grown in laminin culture conditions that
favor elongated cells downregulate the small GTPase RhoA and
differentiate into smooth muscle cells (Beqaj et al., 2002). When
cultured to enrich for rounded cells, cytoplasmic RhoA levels were
increased and the transcription factor SRF was excluded from the
nucleus, which in turn inhibited expression of smooth muscle markers.
Differentiation was restored in these cells by plating on laminin-2.

Mammary gland differentiation

Perhaps the best-studied example of ECM effects on gene
expression comes from studies of the mammary gland. Acinar
differentiation and expression of milk proteins requires interaction
of mammary epithelial cells with a conducive 3-D ECM microenvi-
ronment (Nelson and Bissell, 2006). Laminin-1 (but not fibronectin,
collagen I or collagen IV) induces B-lactoglobulin and P-casein
transcription though integrin-dependent phosphorylation of the
prolactin receptor that is an upstream regulator of the transcription
factor STAT5 (Streuli et al., 1995a,b). Specific DNA sequences in the
promoter region of B-casein have been identified as ECM-response
elements that on their own regulate transcription in a laminin-
dependent manner (Schmidhauser et al., 1992). This intriguing
finding has led to the hypothesis that cis-regulatory elements may
exist for specific matrix molecules (Nelson and Bissell, 2006) though
other examples have yet to be uncovered.

ECM dynamics and the role of cell and tissue forces

The physical state of the ECM is highly dynamic during
development. Cells assemble and remodel ECM in ways that affect
not only matrix composition but also its 3-D organization. Differences
in ECM density, composition and architecture can influence pro-
foundly cell behaviors. We have already discussed evidence for the
involvement of specific ECM molecules in differentiation and motility
and the importance of ECM structure in imparting tissue stiffness.
Given these functional properties, the question of how and when
matrix is assembled and remodeled in the embryo becomes an

important consideration. For example, Rozario et al. (2009) experi-
mentally separated simple fibronectin synthesis and deposition at cell
surfaces from the assembly of more complex fibrillar structures
during Xenopus gastrulation. In the absence of fibrillar fibronectin,
epiboly and radial intercalation were disrupted but convergent
extension and mediolateral intercalation progressed normally even
though the latter process is also known to require fibronectin-
integrin adhesion and signaling (Davidson et al., 2006; Marsden and
DeSimone, 2003). While this study is one of the few to address the
functional consequences of assembly state to specific developmental
events in vivo, a number of cell culture experiments in recent years
serve to highlight the importance of “matrix-topography” to cell
physiology (Cukierman et al., 2001; Mao and Schwarzbauer, 2005)
and migration (Doyle et al., 2009). More work needs to be done in this
area but based on these studies there is ample reason to suggest that
cellular mechanisms regulating matrix assembly may serve as normal
checkpoints for the progression of morphogenetic and/or cell fate
decisions. In addition, tissue boundaries are outlined by assembled
ECM leading to a physical separation that is likely critical to maintain
tissue identity and integrity, to facilitate morphogenesis, and to
regulate signaling interactions between tissues.

ECM assembly and remodeling is regulated during embryogenesis

ECM assembly is complex and mechanisms of assembly vary
depending upon the matrix molecules in question and the cells that
produce, assemble and remodel them. The dynamic nature of the
assembly process is particularly evident during embryogenesis; de
novo accumulation of matrix and subsequent remodeling occurs
throughout and accompanies the formation of emerging tissues
including branched organs as discussed earlier. Matrix assembly is
often coincident with the initiation of a morphogenetic movement. For
example, the assembly of fibronectin fibrils along the blastocoel roof
in amphibians precedes mesendoderm migration (Lee et al., 1984;
Nakatsuji et al., 1985; Winklbauer, 1998), which in turn requires
fibronectin adhesion (Boucaut et al., 1984; Davidson et al., 2002). In
Xenopus, mesendoderm cells remodel the assembled matrix as they
pass over it (Davidson et al., 2004) and it has been suggested that this
is involved in regulating the velocity of mesendoderm migration
(Rozario et al., 2009).

Because the physical assembly state of the ECM is clearly critical to
cell response and function, it is important to consider the possibility
that the assembly process, in itself, is subject to developmental
control as discussed above. Recently, Dzamba et al. (2009) demon-
strated that in the absence of Wnt/PCP signaling fibronectin matrix
assembly is inhibited in the blastocoel roof of Xenopus embryos. In
this case, cells “assemble” matrix at their edges but subsequent
elaboration of fibrils across cell surfaces fails to occur. Interestingly,
the mechanism by which integrin dependent fibrils are assembled
requires cadherins, cortical actin assembly and the activation of
myosin contractility in response to Rac and Pak kinase activity
(Dzamba et al.,, 2009). These data also suggest that tissue generated
stresses resulting from morphogenetic movements may contribute to
the spatial assembly of matrices in vivo. Studies done with zebrafish
embryos provide evidence of an additional mechanism for the
regulation of fibronectin matrix assembly along tissue boundaries.
Jilich et al. (2009) show that Eph/Ephrin signaling clusters a5p31
integrins along cell borders and de-represses integrin trans-inhibitory
signals to permit the proper spatiotemporal deposition of fibronectin
matrix during somitogenesis. These data suggest a mechanism for
self-organization of the ECM at emergent tissue boundaries.

ECM on the move?

Morphogenesis involves short- and long-range movements of cells
and tissues and most, if not all, of these movements involve
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interactions with ECM. The prevalent view based largely on what has
been inferred from cell culture studies, is that cells “respond” to ECM,
for example, by moving towards or away from ECM molecules that are
assembled in the extracellular compartment. Concentration gradients
of deposited ECM, the physical properties of the matrix (e.g., stiffness,
elasticity, viscosity) and the molecular composition of the matrix
influence a given cell's response to the ECM and regulate specific
behaviors.

In cell culture, ECM is typically immobilized on glass or plastic
surfaces and under these conditions, when cells engage the ECM with
their integrins and exert actomyosin-dependent contractile forces
they translocate. One provocative alternative interpretation, however,
is that the migration of cells in vitro may not always reflect true
“migration” per se but instead, a co-opting of the integrin receptors
and contractile machinery that are normally involved in matrix
remodeling. If the matrix cannot be remodeled because it is stuck to
an artificial substrate as it is produced then the consequence will be
increased cell motility and restricted ECM displacement. It is perhaps
ironic that the near universal cell-biology textbook example of a
migratory cell is the mammalian fibroblast, the principal in vivo
function of which is to synthesize, assemble and turnover ECM in
connective tissues.

So, what is the state of the ECM in embryonic tissues that undergo
dramatic and well-established movements and cellular rearrange-
ments in vivo? Do cells always move with respect to a matrix that is
largely “fixed” in place? Until recently, such questions have been
difficult to address for technical reasons; both the ECM molecule(s)
and the migratory cells in question have to be imaged in live embryos
and tissues over time. Zamir and colleagues (Czirok et al., 2006; Zamir
et al., 2005, 2008) successfully developed both the imaging and
computational methods needed to accomplish this using the optically
favorable avian embryo. Using fluorescently-tagged fibronectin or
fibrillin as fiduciary markers they imaged by time-lapse both the
assembled ECM and epiblastic cell movements during primitive streak
formation. Astonishingly, a remarkable degree of correspondence
between both epiblastic cell and sub-epiblastic ECM displacements
was observed as morphogenesis proceeded in these embryos. A
similar correlation between fibronectin fibrils and cell movements has
also been reported for Xenopus gastrula-stage mesoderm and
ectoderm explants (Davidson et al., 2008). The most parsimonious
explanation for these observations is that migratory cells and tissues
“carry their ECM with them” under some circumstances. Whether this
is more likely to occur during early morphogenesis as ECM is first
being assembled (i.e., in many cases by the same cells undergoing
cell/tissue movements) remains to be established. It is clear, however,
that models of cell and tissue motility based primarily on cell adhesion
to ECM must take into account the realities of a “substrate” that is not
necessarily fixed in place. It will be of great interest to determine the
degree to which ECM is displaced in later stage migratory events such
as neural crest and germ cell migration.

If the ECM is important for cell and tissue movements as so many
studies have demonstrated, then a “mobile ECM” may be seen as
offering a challenge to our thinking about the likely cellular
mechanisms involved. Similarly, if ECM-dependent motile behaviors
do not always involve the generation of traction forces and the active
“pulling or pushing” against fixed matrix elements, how do cells
move? Some clues may come from recent studies of the involvement
of fibronectin in Xenopus convergent extension. When fibronectin or
integrin o531 function is perturbed in Xenopus embryos, axis
elongation is reduced and the normally bipolar protrusive activity of
mesoderm undergoing mediolateral intercalation movements is
disrupted (Davidson et al., 2006; Marsden and DeSimone, 2003). In
the absence of fibronectin the mesoderm becomes multipolar
protrusive and these cells will converge toward the midline but
instead of driving extension in the anterioposterior direction, the
affected cells overlap and underlap one another and, thus, the tissue

thickens. The net result is “convergent thickening” instead of
convergent extension (Davidson et al., 2006). These observations
suggest that integrin occupancy by its ligand fibronectin may
help regulate protrusive activity. While non-canonical wnt planar
cell polarity signaling is essential for bipolar protrusive activity
(Wallingford and Harland, 2001; Wallingford et al., 2000), lack of
integrin occupancy in these cells leads to increased frequency and
randomization of cellular protrusions (Davidson et al., 2006).
Interestingly, increased fibronectin assembly and/or binding at the
mesoderm cell surface are associated with a decrease in protrusive
activity (Davidson et al., 2008, 2006). One intriguing possibility is that
the role of the ECM in this system is to promote or attenuate integrin
signals important for protrusive activity and possibly the regulation of
cadherin adhesion and traction along cell surfaces to facilitate cell
intercalation behaviors. Thus, integrin-cadherin “crosstalk” may play
a significant role in the regulation of both the cell-cell and cell-ECM
adhesive activities involved (Dzamba et al., 2009).

Summary

It is clear that the ECM impacts a number of cellular functions that
are critical for normal development and morphogenesis. Advances in
the cell biology of ECM and ECM receptors have provided new and
important ways of thinking about the roles of matrix in development
beyond simple adhesion and space filling properties. Cell signaling
through ECM can impact cell fate decisions, cell proliferation and
survival, and other specialized functions. An emergent area of interest
and importance includes the mechanical contributions of ECM
architecture to these processes. Future studies will be needed to
establish how tissue generated forces are influenced by ECM and, in
turn, how these forces might regulate ECM assembly and function.
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